An optimal, as well as feasible solution to an LP problem is obtained by choosing from several values of x1,x2,.....,xn, the one set of values that satisfies the given set of constraints simultaneously and also provides the optimal [maximum or minimum] value of the given objective function. For LP problems that have only two variables, it is possible that the entire set of feasible solutions can be displayed graphically by plotting linear constraints on a graph paper to locate the best [optimal] solution. The technique used to identify the optimal solution is called a graphical solution approach or technique for an LP problem with two variables. Although most real-world problems have more than two decision variables, and hence cannot be solved graphically, this solution approach provides a valuable understanding of how to solve LP problems involving more than two variables algebraically. In this chapter, we shall discuss two graphical solution methods or approaches (i) the Extreme point solution method (ii) the Iso-profit (cost) function line method to
I am an educator to uses advanced tools and models. I use mathematics, science, statistics, economics, finance, econometrics, business mathematics, statistical analysis, and Python or r language, computer science, stock analysis.
The Internet is a transformative technology that has revolutionized communication, co…
Total Pageviews
Search This Blog
Online AI,ML,DL,Python,Mathematics and Statistics
We provide Online AI,ML,DL, Mathematics and Statistics Classes for graduate, post graduate, under graduate etc.
Author Details
I am a Master degree holder from Delhi. I have good skill to use technology in Mathematics, Statistics, Econometrics, Finance, and language-R,Python,AI,ML,DL,MATLAB, etc.
Recent Posts
3/recent/post-list
More Info.
Need Online Classes for Mathematics and Statistics?
Visit My Facebook Page
0 Comments