> x = c(5, 5, 5, 13, 7, 11, 11, 9, 8, 9)
> y = c(11, 8, 4, 5, 9, 5, 10, 5, 4, 10)
>
> boxplot(x,y)
> boxplot(x,y)
> y=rnorm(1000)
> f=factor(rep(1:10,100))
> boxplot(y ~ f,main="Boxplot of normal random data with model notation")
> x = rnorm(100)
> y = factor(rep(1:10,10))
> stripchart(x ~ y)
> par(mfrow=c(1,3))
> data(InsectSprays)
> boxplot(count ~ spray, data = InsectSprays, col = "lightgray")
> plot(x,y)
> x = 1:10
> y = sample(1:100,10)
> z = x+y
> lm(z ~ x+y)
Call:
lm(formula = z ~ x + y)
Coefficients:
(Intercept) x y
2.472e-14 1.000e+00 1.000e+00
> z = x+y + rnorm(10,0,10)
> lm(z ~ x+y)
Call:
lm(formula = z ~ x + y)
Coefficients:
(Intercept) x y
-5.888 0.484 1.180
> lm(z ~ x+y -1)
Call:
lm(formula = z ~ x + y - 1)
Coefficients:
x y
-0.05044 1.13803
> summary(lm(z ~ x+y ))
Call:
lm(formula = z ~ x + y)
Residuals:
Min 1Q Median 3Q Max
-12.993 -6.778 0.519 6.582 13.599
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -5.8883 9.1775 -0.642 0.542
x 0.4840 1.1287 0.429 0.681
y 1.1803 0.1011 11.675 7.64e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 10.19 on 7 degrees of freedom
Multiple R-squared: 0.9514, Adjusted R-squared: 0.9375
F-statistic: 68.49 on 2 and 7 DF, p-value: 2.534e-05
> x = c(4,3,4,5,2,3,4,5)
> y = c(4,4,5,5,4,5,4,4)
> z = c(3,4,2,4,5,5,4,4)
> scores = data.frame(x,y,z)
> boxplot(scores)
> scores = stack(scores)
> names(scores)
[1] "values" "ind"
> oneway.test(values ~ ind, data=scores, var.equal=T)
One-way analysis of means
data: values and ind
F = 1.1308, num df = 2, denom df = 21, p-value = 0.3417
> df = stack(data.frame(x,y,z))
> oneway.test(values ~ ind, data=df,var.equal=T)
One-way analysis of means
data: values and ind
F = 1.1308, num df = 2, denom df = 21, p-value = 0.3417
> anova(lm(values ~ ind, data=df))
Analysis of Variance Table
Response: values
Df Sum Sq Mean Sq F value Pr(>F)
ind 2 1.75 0.87500 1.1308 0.3417
Residuals 21 16.25 0.77381
>
> kruskal.test(values ~ ind, data=df)
Kruskal-Wallis rank sum test
data: values by ind
Kruskal-Wallis chi-squared = 1.9387, df = 2, p-value = 0.3793
> y = c(11, 8, 4, 5, 9, 5, 10, 5, 4, 10)
>
> boxplot(x,y)
> boxplot(x,y)
> y=rnorm(1000)
> f=factor(rep(1:10,100))
> boxplot(y ~ f,main="Boxplot of normal random data with model notation")
> x = rnorm(100)
> y = factor(rep(1:10,10))
> stripchart(x ~ y)
> par(mfrow=c(1,3))
> data(InsectSprays)
> boxplot(count ~ spray, data = InsectSprays, col = "lightgray")
> plot(x,y)
> x = 1:10
> y = sample(1:100,10)
> z = x+y
> lm(z ~ x+y)
Call:
lm(formula = z ~ x + y)
Coefficients:
(Intercept) x y
2.472e-14 1.000e+00 1.000e+00
> z = x+y + rnorm(10,0,10)
> lm(z ~ x+y)
Call:
lm(formula = z ~ x + y)
Coefficients:
(Intercept) x y
-5.888 0.484 1.180
> lm(z ~ x+y -1)
Call:
lm(formula = z ~ x + y - 1)
Coefficients:
x y
-0.05044 1.13803
> summary(lm(z ~ x+y ))
Call:
lm(formula = z ~ x + y)
Residuals:
Min 1Q Median 3Q Max
-12.993 -6.778 0.519 6.582 13.599
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -5.8883 9.1775 -0.642 0.542
x 0.4840 1.1287 0.429 0.681
y 1.1803 0.1011 11.675 7.64e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 10.19 on 7 degrees of freedom
Multiple R-squared: 0.9514, Adjusted R-squared: 0.9375
F-statistic: 68.49 on 2 and 7 DF, p-value: 2.534e-05
> x = c(4,3,4,5,2,3,4,5)
> y = c(4,4,5,5,4,5,4,4)
> z = c(3,4,2,4,5,5,4,4)
> scores = data.frame(x,y,z)
> boxplot(scores)
> scores = stack(scores)
> names(scores)
[1] "values" "ind"
> oneway.test(values ~ ind, data=scores, var.equal=T)
One-way analysis of means
data: values and ind
F = 1.1308, num df = 2, denom df = 21, p-value = 0.3417
> df = stack(data.frame(x,y,z))
> oneway.test(values ~ ind, data=df,var.equal=T)
One-way analysis of means
data: values and ind
F = 1.1308, num df = 2, denom df = 21, p-value = 0.3417
> anova(lm(values ~ ind, data=df))
Analysis of Variance Table
Response: values
Df Sum Sq Mean Sq F value Pr(>F)
ind 2 1.75 0.87500 1.1308 0.3417
Residuals 21 16.25 0.77381
>
> kruskal.test(values ~ ind, data=df)
Kruskal-Wallis rank sum test
data: values by ind
Kruskal-Wallis chi-squared = 1.9387, df = 2, p-value = 0.3793
0 Comments