How to block maxima for Stock losses

 How to block maxima for Stock losses

R is free software
> library ( evir )
Warning messages:
1: package ‘fOptions’ was built under R version 3.5.2
2: package ‘timeDate’ was built under R version 3.5.1
3: package ‘timeSeries’ was built under R version 3.5.1
4: package ‘fBasics’ was built under R version 3.5.2
5: package ‘evir’ was built under R version 3.5.2
> data ( siemens )
> SieLoss <− −100.0 ∗ siemens
> SieGEV <− gev ( SieLoss , block = " semester " )
Error in gev(SieLoss, block = " semester ") : unknown time period
> library(evir)
> SieGEV <− gev ( SieLoss , block = " semester " )
Error in gev(SieLoss, block = " semester ") : unknown time period
> out <- gev(bmw, "month")
Error in gev(bmw, "month") : object 'bmw' not found
> require(graphics)
> fr <- function(x) {   ## Rosenbrock Banana function
+     x1 <- x[1]
+     x2 <- x[2]
+     100 * (x2 - x1 * x1)^2 + (1 - x1)^2
+ }
> grr <- function(x) { ## Gradient of 'fr'
+     x1 <- x[1]
+     x2 <- x[2]
+     c(-400 * x1 * (x2 - x1 * x1) - 2 * (1 - x1),
+       200 *      (x2 - x1 * x1))
+ }
> optim(c(-1.2,1), fr)
$`par`
[1] 1.000260 1.000506

$value
[1] 8.825241e-08

$counts
function gradient
     195       NA

$convergence
[1] 0

$message
NULL

> (res <- optim(c(-1.2,1), fr, grr, method = "BFGS"))
$`par`
[1] 1 1

$value
[1] 9.594956e-18

$counts
function gradient
     110       43

$convergence
[1] 0

$message
NULL

> optimHess(res$par, fr, grr)
          [,1] [,2]
[1,]  802.0004 -400
[2,] -400.0000  200
> optim(c(-1.2,1), fr, NULL, method = "BFGS", hessian = TRUE)
$`par`
[1] 0.9998044 0.9996084

$value
[1] 3.827383e-08

$counts
function gradient
     118       38

$convergence
[1] 0

$message
NULL

$hessian
          [,1]      [,2]
[1,]  801.6881 -399.9218
[2,] -399.9218  200.0000

> optim(c(-1.2,1), fr, grr, method = "CG")
$`par`
[1] -0.7648373  0.5927588

$value
[1] 3.106579

$counts
function gradient
     402      101

$convergence
[1] 1

$message
NULL

> optim(c(-1.2,1), fr, grr, method = "CG", control = list(type = 2))
$`par`
[1] 0.9944093 0.9888229

$value
[1] 3.123777e-05

$counts
function gradient
     385      101

$convergence
[1] 1

$message
NULL

> optim(c(-1.2,1), fr, grr, method = "L-BFGS-B")
$`par`
[1] 0.9999997 0.9999995

$value
[1] 2.267577e-13

$counts
function gradient
      47       47

$convergence
[1] 0

$message
[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"

> flb <- function(x)
+ { p <- length(x); sum(c(1, rep(4, p-1)) * (x - c(1, x[-p])^2)^2) }
> optim(rep(3, 25), flb, NULL, method = "L-BFGS-B",
+       lower = rep(2, 25), upper = rep(4, 25))
$`par`
 [1] 2.000000 2.000000 2.000000 2.000000
 [5] 2.000000 2.000000 2.000000 2.000000
 [9] 2.000000 2.000000 2.000000 2.000000
[13] 2.000000 2.000000 2.000000 2.000000
[17] 2.000000 2.000000 2.000000 2.000000
[21] 2.000000 2.000000 2.000000 2.109093
[25] 4.000000

$value
[1] 368.1059

$counts
function gradient
       6        6

$convergence
[1] 0

$message
[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"

>
> fw <- function (x)
+     10*sin(0.3*x)*sin(1.3*x^2) + 0.00001*x^4 + 0.2*x+80
>
> plot(fw, -50, 50, n = 1000, main = "optim() minimising 'wild function'")
>
> res <- optim(50, fw, method = "SANN",
+              control = list(maxit = 20000, temp = 20, parscale = 20))
> res
$`par`
[1] -15.8146

$value
[1] 67.4703

$counts
function gradient
   20000       NA

$convergence
[1] 0

$message
NULL

> (r2 <- optim(res$par, fw, method = "BFGS"))
$`par`
[1] -15.81515

$value
[1] 67.46773

$counts
function gradient
      16        3

$convergence
[1] 0

$message
NULL

> points(r2$par, r2$value, pch = 8, col = "red", cex = 2)
> library(stats)
> eurodistmat <- as.matrix(eurodist)
>
> distance <- function(sq) {  # Target function
+     sq2 <- embed(sq, 2)
+     sum(eurodistmat[cbind(sq2[,2], sq2[,1])])
+ }
> genseq <- function(sq) {  # Generate new candidate sequence
+     idx <- seq(2, NROW(eurodistmat)-1)
+     changepoints <- sample(idx, size = 2, replace = FALSE)
+     tmp <- sq[changepoints[1]]
+     sq[changepoints[1]] <- sq[changepoints[2]]
+     sq[changepoints[2]] <- tmp
+     sq
+ }
> sq <- c(1:nrow(eurodistmat), 1)
> loc <- -cmdscale(eurodist, add = TRUE)$points
> x <- loc[,1]; y <- loc[,2]
> s <- seq_len(nrow(eurodistmat))
> tspinit <- loc[sq,]
>
> plot(x, y, type = "n", asp = 1, xlab = "", ylab = "",
+      main = "initial solution of traveling salesman problem", axes = FALSE)
> arrows(tspinit[s,1], tspinit[s,2], tspinit[s+1,1], tspinit[s+1,2],
+        angle = 10, col = "green")
> text(x, y, labels(eurodist), cex = 0.8)
> set.seed(123)
> res <- optim(sq, distance, genseq, method = "SANN",
+              control = list(maxit = 30000, temp = 2000, trace = TRUE,
+                             REPORT = 500))
sann objective function values
initial       value 29625.000000
iter     5000 value 13585.000000
iter    10000 value 13092.000000
iter    15000 value 13063.000000
iter    20000 value 12919.000000
iter    25000 value 12907.000000
iter    29999 value 12842.000000
final         value 12842.000000
sann stopped after 29999 iterations
> tspres <- loc[res$par,]
> plot(x, y, type = "n", asp = 1, xlab = "", ylab = "",
+      main = "optim() 'solving' traveling salesman problem", axes = FALSE)
> arrows(tspres[s,1], tspres[s,2], tspres[s+1,1], tspres[s+1,2],
+        angle = 10, col = "red")
> text(x, y, labels(eurodist), cex = 0.8)
> system.time(rO <- optimize(function(x) (x-pi)^2, c(0, 10)))
   user  system elapsed
      0       0       0
> system.time(ro <- optim(1, function(x) (x-pi)^2, control=list(warn.1d.NelderMead = FALSE)))
   user  system elapsed
      0       0       0
> rO$minimum - pi # 0 (perfect), on one platform
[1] 0
> ro$par - pi     # ~= 1.9e-4    on one platform
[1] -0.0001864036
> utils::str(ro)
List of 5
 $ par        : num 3.14
 $ value      : num 3.47e-08
 $ counts     : Named int [1:2] 32 NA
  ..- attr(*, "names")= chr [1:2] "function" "gradient"
 $ convergence: int 0
 $ message    : NULL
> library("evir", lib.loc="~/R/win-library/3.5")
> SieGEV <− gev ( SieLoss , block = " semester " )
Error in gev(SieLoss, block = " semester ") : unknown time period
> SieGEV <− gev ( SieLoss , block = " month " )
Error in gev(SieLoss, block = " month ") : unknown time period
> data(bmw)
> out <- gev(bmw, "month")
> out
$`n.all`
[1] 6146

$n
[1] 283

$data
  [1] 0.047704097 0.040072550 0.057006818
  [4] 0.042967868 0.022428128 0.040120865
  [7] 0.030498439 0.025262456 0.057779537
 [10] 0.039382379 0.031748698 0.021695014
 [13] 0.085708790 0.017057713 0.073563768
 [16] 0.018876364 0.033584741 0.058143393
 [19] 0.042326924 0.009595910 0.032909034
 [22] 0.051069736 0.043738236 0.050509198
 [25] 0.066278121 0.040930359 0.036095789
 [28] 0.029984390 0.020905075 0.032823886
 [31] 0.026219918 0.047408878 0.047743616
 [34] 0.018994386 0.027733998 0.031215494
 [37] 0.027928237 0.011354940 0.040061610
 [40] 0.015156798 0.016943433 0.015530942
 [43] 0.022243069 0.012447720 0.010386600
 [46] 0.029017005 0.015888185 0.012732589
 [49] 0.010195424 0.018930242 0.027147614
 [52] 0.017685602 0.011002997 0.026742729
 [55] 0.023126669 0.010324201 0.016317671
 [58] 0.022688656 0.018503749 0.029676230
 [61] 0.017803681 0.028395043 0.011157337
 [64] 0.020159906 0.008803704 0.027067868
 [67] 0.013293438 0.020227519 0.028373642
 [70] 0.017675785 0.017558952 0.015440693
 [73] 0.020048081 0.010208282 0.038070120
 [76] 0.029718365 0.015372579 0.010795260
 [79] 0.008982199 0.030438497 0.068411993
 [82] 0.010744914 0.033322322 0.011913702
 [85] 0.013162712 0.027771744 0.019664256
 [88] 0.040528019 0.018800955 0.033664422
 [91] 0.024044674 0.027267717 0.016999328
 [94] 0.069930216 0.025860543 0.022775877
 [97] 0.035147558 0.029596241 0.023585409
[100] 0.012656443 0.020927520 0.040695897
[103] 0.019978081 0.031988439 0.025409997
[106] 0.021238736 0.045243354 0.039014446
[109] 0.013019157 0.044288785 0.027986842
[112] 0.028975106 0.015568407 0.014595571
[115] 0.017141573 0.014628069 0.028136965
[118] 0.022023821 0.022388485 0.017276267
[121] 0.018211336 0.028117197 0.029418132
[124] 0.017657790 0.038427474 0.032953268
[127] 0.015801683 0.037267309 0.034521814
[130] 0.030317974 0.015823230 0.040316266
[133] 0.021733491 0.020395699 0.021325364
[136] 0.018883156 0.021034092 0.016287900
[139] 0.026655237 0.025479085 0.016252641
[142] 0.030026651 0.029463070 0.054088773
[145] 0.030317974 0.050467667 0.090348294
[148] 0.028732294 0.016799955 0.011537384
[151] 0.029699096 0.066342789 0.019648619
[154] 0.051285118 0.041242959 0.033119684
[157] 0.088410957 0.030153038 0.034251807
[160] 0.011888294 0.055775683 0.046194152
[163] 0.028076501 0.034191365 0.044215223
[166] 0.066280459 0.044012805 0.027359104
[169] 0.035537302 0.043172876 0.117191789
[172] 0.053856606 0.043313442 0.046766994
[175] 0.029291783 0.033416901 0.036793770
[178] 0.029772202 0.016362673 0.071609532
[181] 0.085028505 0.028179646 0.013151022
[184] 0.016368476 0.018105128 0.024107501
[187] 0.040991244 0.026881436 0.024632454
[190] 0.012288641 0.024679312 0.028208721
[193] 0.018634561 0.021706789 0.024693705
[196] 0.057176834 0.015042360 0.012608702
[199] 0.017940725 0.029723723 0.036431458
[202] 0.026984661 0.017313206 0.057152069
[205] 0.051660609 0.041497805 0.033114946
[208] 0.026184444 0.013923817 0.026675428
[211] 0.029396614 0.019142057 0.021650150
[214] 0.059098050 0.039794958 0.067674756
[217] 0.088632045 0.062040653 0.041325860
[220] 0.016045377 0.042388410 0.040997961
[223] 0.018651503 0.018750425 0.019290632
[226] 0.044707716 0.005662407 0.009850060
[229] 0.023593976 0.014741345 0.018630817
[232] 0.018749337 0.016068787 0.018174172
[235] 0.035958313 0.007357140 0.024359967
[238] 0.025035790 0.055598597 0.035407724
[241] 0.020823390 0.011553667 0.017623795
[244] 0.023831384 0.020582821 0.029107995
[247] 0.012860773 0.021955587 0.068605893
[250] 0.016159641 0.014116384 0.037276749
[253] 0.079474594 0.066689116 0.016613801
[256] 0.017747906 0.024150295 0.018389544
[259] 0.016504432 0.019881371 0.035009410
[262] 0.018259789 0.009618542 0.030405515
[265] 0.013192803 0.030913346 0.021380795
[268] 0.011232361 0.019076147 0.022407876
[271] 0.031367270 0.025284978 0.024784416
[274] 0.016912398 0.009060769 0.022973983
[277] 0.033093688 0.015351852 0.016209831
[280] 0.026569373 0.017001017 0.015623468
[283] 0.019133955

$block
[1] "month"

$par.ests
        xi      sigma         mu
0.22084471 0.01016219 0.02104994

$par.ses
          xi        sigma           mu
0.0538218570 0.0005249399 0.0006934577

$varcov
              [,1]          [,2]          [,3]
[1,]  2.896792e-03 -2.617132e-06 -1.249425e-05
[2,] -2.617132e-06  2.755619e-07  2.157608e-07
[3,] -1.249425e-05  2.157608e-07  4.808836e-07

$converged
[1] 0

$nllh.final
[1] -816.0357

attr(,"class")
[1] "gev"
>
>
>
> out<- gev(bmw,"month")
> out <- gev(bmw, 100)
> SieGEV <− gev( SieLoss,block ="month")
> plot (SieGEV$data,type = " h " , col = " blue ", xlab = " " ,
+         ylab = " Block Maxima" ,
+         main = "Maximum BiannualLossesof Siemens " )
Error in plot.xy(xy, type, ...) : invalid plot type ' '
In addition: Warning message:
In plot.xy(xy, type, ...) :
  plot type ' h ' will be truncated to first character
> plot (SieGEV$data,type = " h ", col = " blue ", xlab = " " ,ylab = " Block Maxima" , main = "Maximum BiannualLossesof Siemens ")
Error in plot.xy(xy, type, ...) : invalid plot type ' '
In addition: Warning message:
In plot.xy(xy, type, ...) :
  plot type ' h ' will be truncated to first character
> plot (SieGEV$data,type = "h", col = "blue", xlab = " ,ylab = " Block Maxima" , main = "Maximum Biannual Losses of Siemens")
Error: unexpected symbol in "plot (SieGEV$data,type = "h", col = "blue", xlab = " ,ylab = " Block"
> SieGEV
$`n.all`
[1] 6146

$n
[1] 283

$data
  [1]  1.6536690  3.4026271  3.5896764
  [4]  2.4363154  2.2190569  2.6621690
  [7]  3.0927687  3.5197198  2.4184353
 [10]  2.3467744  2.1210311  1.5029506
 [13]  2.1874949  3.4257494  2.0331069
 [16]  2.8475728  2.2709367  2.0191972
 [19]  1.4117882  3.1748698  1.6491702
 [22]  2.2267549  3.1872617  1.9841921
 [25]  1.5604298  1.4921810  0.9151478
 [28]  0.5331159  1.3761685  1.8930788
 [31]  2.7684999  0.9991000  1.0722813
 [34]  1.8397365  1.5435808  1.0640662
 [37]  0.9368628  1.0730908  1.9506175
 [40]  1.3471241  3.5896546  1.6234766
 [43]  1.7286863  1.2846423  0.9982115
 [46]  2.1193397  1.0924478  2.4508885
 [49]  2.9427001  1.6106459  0.8926898
 [52]  1.2969331  1.2121361  0.5624068
 [55]  2.1739987  1.6633335  0.7278987
 [58]  0.9950331  0.5942293  0.7528266
 [61]  0.9508788  0.8940779  1.6221919
 [64]  1.0400094  2.3063940  1.6047642
 [67]  0.5065439  0.6480379  1.1514918
 [70]  1.3880849  0.6595562  1.8634080
 [73]  1.0929071  1.7669791  1.7094433
 [76]  0.8688152  2.7912846  2.6773598
 [79]  0.8360885  1.4056001  0.9356272
 [82]  1.1575692  0.5542542  2.0636656
 [85]  1.1870880  1.8915038  1.6469543
 [88]  1.6116384  4.9999547  1.1622840
 [91]  0.7788521  0.6306682  0.6920443
 [94]  1.5674302  0.8240188  1.4173466
 [97]  1.2407107  1.7079834  2.2397353
[100]  3.3175862  3.3228516  0.5922183
[103]  1.7978998  0.7527155  1.3144137
[106]  3.5107748  2.7424887  3.9298765
[109]  1.7241806  0.6972140  1.0398707
[112]  1.1096998  3.5335848  1.7425417
[115]  1.0779134  1.6385415  1.1560822
[118]  2.2122571  4.4886451  2.5135973
[121]  1.7623495  0.7214460  3.1989716
[124]  0.9447139  1.4484497  1.4198687
[127]  3.2918569  1.8343128  1.9322879
[130]  2.3835173  1.1528403  0.7318097
[133]  1.5378692  3.2633218  0.8741717
[136]  0.8289248  1.5479779  1.1374279
[139]  1.7396470  1.4001306  2.0545854
[142]  1.2002326  0.9077941  1.7542311
[145]  1.5805540  1.2834196  2.8254668
[148]  2.8259337  3.0883472  1.0949014
[151]  1.6965534  2.4391453  3.4268457
[154]  1.4953550  2.4938948  2.6579638
[157]  3.5718083  4.7905600  1.1379924
[160]  1.3513719  6.6021101  4.0637646
[163]  3.8652154  2.5001302  2.8358865
[166]  1.4556298  2.6126305  1.7518696
[169]  6.3867284  3.1010237  8.6568016
[172]  3.7944932  2.8393075  3.4635497
[175]  1.4144507  2.4259950  5.6995481
[178]  2.6472134  1.9652938  7.2320662
[181]  4.7829088  1.1770863  1.7784756
[184]  1.0294897  8.1770542  3.3198069
[187]  3.2595478  1.3297028  2.5196294
[190]  2.0831702  1.0382349  2.0367303
[193]  3.0934190  1.9465795  1.3685825
[196]  1.4377849  2.3776127  0.7466900
[199]  1.5325970  1.0976676  0.9890283
[202]  1.8210658  2.2436317 12.0111624
[205]  2.6916164  2.5308099  2.7487583
[208]  2.8735689  1.5320721  2.1862414
[211]  1.9762419  1.5716073  1.2565746
[214]  6.0060331  2.9175489  2.8963547
[217]  3.4198861  2.3000384  1.3762774
[220]  1.4864023  2.7354883  1.7335580
[223]  0.9072227  2.3636616  1.2646683
[226]  9.3806420  1.0966208  0.9709587
[229]  0.9623170  0.7572981  1.2196383
[232]  0.9762859  2.0181874  1.1351194
[235]  0.6193797  1.3728856  2.7488846
[238]  1.8836173  1.4787700  3.3931668
[241]  2.2802854  1.0756865  2.2783174
[244]  1.2495070  2.8341671  1.2006069
[247]  1.1539554  1.1361914  1.8208750
[250]  2.1920309  1.9187432  0.9584072
[253]  4.9052494  2.5863511  2.2497957
[256]  2.0670434  2.0282303  2.0100492
[259]  2.0702936  3.6473998  1.3965681
[262]  1.5479044  3.4507620  3.2426724
[265]  1.4998751  1.1565900  1.2561791
[268]  0.8417013  2.0926198  2.0305266
[271]  1.6009918  1.1278315  1.9391189
[274]  0.9086656  3.3403239  2.9323615
[277]  0.5704793  1.4510533  1.7931181
[280]  1.1174629  1.5387715  1.4401030
[283]  2.1357596

$block
[1] "month"

$par.ests
       xi     sigma        mu
0.2591183 0.7181868 1.4309933

$par.ses
        xi      sigma         mu
0.05438777 0.04055958 0.04922595

$varcov
              [,1]         [,2]          [,3]
[1,]  0.0029580294 -0.000196826 -0.0008900357
[2,] -0.0001968260  0.001645080  0.0012402593
[3,] -0.0008900357  0.001240259  0.0024231940

$converged
[1] 0

$nllh.final
[1] 394.6513

attr(,"class")
[1] "gev"
> plot (SieGEV$data,type = "h", col = "blue", xlab = " ,ylab = " Block Maxima" , main = "Maximum Biannual Losses of Siemens")
Error: unexpected symbol in "plot (SieGEV$data,type = "h", col = "blue", xlab = " ,ylab = " Block"
> plot ( SieGEV$data , type = " h " , col = " blue " , xlab = " " ,
+         ylab = " Block Maxima" ,
+         main = "Maximum Biannual Losses of Siemens " )
Error in plot.xy(xy, type, ...) : invalid plot type ' '
In addition: Warning message:
In plot.xy(xy, type, ...) :
  plot type ' h ' will be truncated to first character
> plot(out)

Make a plot selection (or 0 to exit):

1: plot: Scatterplot of Residuals
2: plot: QQplot of Residuals

Selection:
Enter an item from the menu, or 0 to exit
Selection:
Enter an item from the menu, or 0 to exit
Selection: 1

Make a plot selection (or 0 to exit):

1: plot: Scatterplot of Residuals
2: plot: QQplot of Residuals

Selection: 2

Make a plot selection (or 0 to exit):

1: plot: Scatterplot of Residuals
2: plot: QQplot of Residuals

Selection: 3
Enter an item from the menu, or 0 to exit
Selection: 0
> data(danish)
> qplot(danish)
> plot(out)

Make a plot selection (or 0 to exit):

1: plot: Scatterplot of Residuals
2: plot: QQplot of Residuals

Selection: 1

Make a plot selection (or 0 to exit):

1: plot: Scatterplot of Residuals
2: plot: QQplot of Residuals

Selection: 2

Make a plot selection (or 0 to exit):

1: plot: Scatterplot of Residuals
2: plot: QQplot of Residuals

Selection: 3
Enter an item from the menu, or 0 to exit
Selection: 4
Enter an item from the menu, or 0 to exit
Selection: 0
> data(bmw)
> out <- pot(-bmw, ne = 200)
> decluster(out$data, 30)
Declustering picture...
Data reduced from 200 to 70
 [1] 0.05525992 0.05084288 0.06689143
 [4] 0.06887800 0.04688708 0.10617520
 [7] 0.05865478 0.04071008 0.02896766
[10] 0.02913723 0.04122546 0.03094040
[13] 0.02659780 0.03465775 0.02606819
[16] 0.02710781 0.06955422 0.03859640
[19] 0.03845126 0.06807869 0.02732490
[22] 0.04194781 0.02563799 0.04957226
[25] 0.03744841 0.02652559 0.03021099
[28] 0.04541566 0.02695412 0.03051167
[31] 0.03984488 0.02648610 0.04525858
[34] 0.03938106 0.03236528 0.05561317
[37] 0.03191673 0.04609111 0.06519183
[40] 0.03668970 0.03540193 0.04491698
[43] 0.04880244 0.04565154 0.04148352
[46] 0.02619353 0.10852160 0.02954286
[49] 0.03225168 0.14061565 0.02895132
[52] 0.02834847 0.03360120 0.07529138
[55] 0.04328683 0.03405556 0.02677080
[58] 0.03221330 0.10577463 0.02764203
[61] 0.05806183 0.03004121 0.03973532
[64] 0.02892858 0.02688352 0.04001846
[67] 0.03412405 0.03232889 0.03123302
[70] 0.03490287
attr(,"times")
 [1] "1973-02-05 05:30:00 IST"
 [2] "1973-07-26 05:30:00 IST"
 [3] "1973-11-14 05:30:00 IST"
 [4] "1973-12-31 05:30:00 IST"
 [5] "1974-05-09 05:30:00 IST"
 [6] "1974-07-05 05:30:00 IST"
 [7] "1974-09-30 05:30:00 IST"
 [8] "1975-05-27 05:30:00 IST"
 [9] "1976-04-06 05:30:00 IST"
[10] "1976-07-28 05:30:00 IST"
[11] "1976-10-12 05:30:00 IST"
[12] "1976-11-15 05:30:00 IST"
[13] "1977-02-18 05:30:00 IST"
[14] "1977-07-08 05:30:00 IST"
[15] "1977-12-06 05:30:00 IST"
[16] "1978-06-21 05:30:00 IST"
[17] "1979-07-11 05:30:00 IST"
[18] "1980-01-21 05:30:00 IST"
[19] "1980-03-18 05:30:00 IST"
[20] "1980-06-20 05:30:00 IST"
[21] "1980-09-08 05:30:00 IST"
[22] "1981-01-27 05:30:00 IST"
[23] "1981-04-29 05:30:00 IST"
[24] "1981-06-26 05:30:00 IST"
[25] "1981-08-25 05:30:00 IST"
[26] "1982-04-27 05:30:00 IST"
[27] "1982-08-17 05:30:00 IST"
[28] "1982-09-27 05:30:00 IST"
[29] "1983-01-24 05:30:00 IST"
[30] "1983-07-12 05:30:00 IST"
[31] "1984-02-09 05:30:00 IST"
[32] "1984-03-12 05:30:00 IST"
[33] "1984-07-05 05:30:00 IST"
[34] "1984-10-19 05:30:00 IST"
[35] "1985-03-25 05:30:00 IST"
[36] "1985-07-10 05:30:00 IST"
[37] "1985-09-13 05:30:00 IST"
[38] "1985-11-05 05:30:00 IST"
[39] "1986-02-27 05:30:00 IST"
[40] "1986-04-28 05:30:00 IST"
[41] "1986-06-03 05:30:00 IST"
[42] "1986-07-04 05:30:00 IST"
[43] "1986-09-05 05:30:00 IST"
[44] "1987-02-04 05:30:00 IST"
[45] "1987-04-27 05:30:00 IST"
[46] "1987-06-02 05:30:00 IST"
[47] "1987-11-09 05:30:00 IST"
[48] "1988-03-25 05:30:00 IST"
[49] "1988-05-11 05:30:00 IST"
[50] "1989-10-16 05:30:00 IST"
[51] "1990-01-04 05:30:00 IST"
[52] "1990-02-26 05:30:00 IST"
[53] "1990-04-23 05:30:00 IST"
[54] "1990-09-25 05:30:00 IST"
[55] "1991-01-14 05:30:00 IST"
[56] "1991-02-26 05:30:00 IST"
[57] "1991-05-17 05:30:00 IST"
[58] "1991-06-28 05:30:00 IST"
[59] "1991-08-19 05:30:00 IST"
[60] "1992-05-13 05:30:00 IST"
[61] "1992-09-24 05:30:00 IST"
[62] "1993-01-25 05:30:00 IST"
[63] "1993-05-14 05:30:00 IST"
[64] "1993-07-27 05:30:00 IST"
[65] "1993-11-22 05:30:00 IST"
[66] "1994-06-20 05:30:00 IST"
[67] "1994-11-23 05:30:00 IST"
[68] "1995-03-09 05:30:00 IST"
[69] "1995-09-22 05:30:00 IST"
[70] "1995-10-23 05:30:00 IST"
> out <- pot(-bmw, ne = 200)
> decluster(out$data, 30)
Declustering picture...
Data reduced from 200 to 70
 [1] 0.05525992 0.05084288 0.06689143
 [4] 0.06887800 0.04688708 0.10617520
 [7] 0.05865478 0.04071008 0.02896766
[10] 0.02913723 0.04122546 0.03094040
[13] 0.02659780 0.03465775 0.02606819
[16] 0.02710781 0.06955422 0.03859640
[19] 0.03845126 0.06807869 0.02732490
[22] 0.04194781 0.02563799 0.04957226
[25] 0.03744841 0.02652559 0.03021099
[28] 0.04541566 0.02695412 0.03051167
[31] 0.03984488 0.02648610 0.04525858
[34] 0.03938106 0.03236528 0.05561317
[37] 0.03191673 0.04609111 0.06519183
[40] 0.03668970 0.03540193 0.04491698
[43] 0.04880244 0.04565154 0.04148352
[46] 0.02619353 0.10852160 0.02954286
[49] 0.03225168 0.14061565 0.02895132
[52] 0.02834847 0.03360120 0.07529138
[55] 0.04328683 0.03405556 0.02677080
[58] 0.03221330 0.10577463 0.02764203
[61] 0.05806183 0.03004121 0.03973532
[64] 0.02892858 0.02688352 0.04001846
[67] 0.03412405 0.03232889 0.03123302
[70] 0.03490287
attr(,"times")
 [1] "1973-02-05 05:30:00 IST"
 [2] "1973-07-26 05:30:00 IST"
 [3] "1973-11-14 05:30:00 IST"
 [4] "1973-12-31 05:30:00 IST"
 [5] "1974-05-09 05:30:00 IST"
 [6] "1974-07-05 05:30:00 IST"
 [7] "1974-09-30 05:30:00 IST"
 [8] "1975-05-27 05:30:00 IST"
 [9] "1976-04-06 05:30:00 IST"
[10] "1976-07-28 05:30:00 IST"
[11] "1976-10-12 05:30:00 IST"
[12] "1976-11-15 05:30:00 IST"
[13] "1977-02-18 05:30:00 IST"
[14] "1977-07-08 05:30:00 IST"
[15] "1977-12-06 05:30:00 IST"
[16] "1978-06-21 05:30:00 IST"
[17] "1979-07-11 05:30:00 IST"
[18] "1980-01-21 05:30:00 IST"
[19] "1980-03-18 05:30:00 IST"
[20] "1980-06-20 05:30:00 IST"
[21] "1980-09-08 05:30:00 IST"
[22] "1981-01-27 05:30:00 IST"
[23] "1981-04-29 05:30:00 IST"
[24] "1981-06-26 05:30:00 IST"
[25] "1981-08-25 05:30:00 IST"
[26] "1982-04-27 05:30:00 IST"
[27] "1982-08-17 05:30:00 IST"
[28] "1982-09-27 05:30:00 IST"
[29] "1983-01-24 05:30:00 IST"
[30] "1983-07-12 05:30:00 IST"
[31] "1984-02-09 05:30:00 IST"
[32] "1984-03-12 05:30:00 IST"
[33] "1984-07-05 05:30:00 IST"
[34] "1984-10-19 05:30:00 IST"
[35] "1985-03-25 05:30:00 IST"
[36] "1985-07-10 05:30:00 IST"
[37] "1985-09-13 05:30:00 IST"
[38] "1985-11-05 05:30:00 IST"
[39] "1986-02-27 05:30:00 IST"
[40] "1986-04-28 05:30:00 IST"
[41] "1986-06-03 05:30:00 IST"
[42] "1986-07-04 05:30:00 IST"
[43] "1986-09-05 05:30:00 IST"
[44] "1987-02-04 05:30:00 IST"
[45] "1987-04-27 05:30:00 IST"
[46] "1987-06-02 05:30:00 IST"
[47] "1987-11-09 05:30:00 IST"
[48] "1988-03-25 05:30:00 IST"
[49] "1988-05-11 05:30:00 IST"
[50] "1989-10-16 05:30:00 IST"
[51] "1990-01-04 05:30:00 IST"
[52] "1990-02-26 05:30:00 IST"
[53] "1990-04-23 05:30:00 IST"
[54] "1990-09-25 05:30:00 IST"
[55] "1991-01-14 05:30:00 IST"
[56] "1991-02-26 05:30:00 IST"
[57] "1991-05-17 05:30:00 IST"
[58] "1991-06-28 05:30:00 IST"
[59] "1991-08-19 05:30:00 IST"
[60] "1992-05-13 05:30:00 IST"
[61] "1992-09-24 05:30:00 IST"
[62] "1993-01-25 05:30:00 IST"
[63] "1993-05-14 05:30:00 IST"
[64] "1993-07-27 05:30:00 IST"
[65] "1993-11-22 05:30:00 IST"
[66] "1994-06-20 05:30:00 IST"
[67] "1994-11-23 05:30:00 IST"
[68] "1995-03-09 05:30:00 IST"
[69] "1995-09-22 05:30:00 IST"
[70] "1995-10-23 05:30:00 IST"
> out <- pot(danish,10)
> plot(out)
https://www.mathclasstutor.online

https://www.mathclasstutor.online

https://www.mathclasstutor.online

https://www.mathclasstutor.online

https://www.mathclasstutor.online

https://www.mathclasstutor.online

https://www.mathclasstutor.online

Make a plot selection (or 0 to exit):

1: plot: Point Process of Exceedances
2: plot: Scatterplot of Gaps
3: plot: Qplot of Gaps
4: plot: ACF of Gaps
5: plot: Scatterplot of Residuals
6: plot: Qplot of Residuals
7: plot: ACF of Residuals
8: plot: Go to GPD Plots

Selection: 1

Make a plot selection (or 0 to exit):

1: plot: Point Process of Exceedances
2: plot: Scatterplot of Gaps
3: plot: Qplot of Gaps
4: plot: ACF of Gaps
5: plot: Scatterplot of Residuals
6: plot: Qplot of Residuals
7: plot: ACF of Residuals
8: plot: Go to GPD Plots

Selection: 2

Make a plot selection (or 0 to exit):

1: plot: Point Process of Exceedances
2: plot: Scatterplot of Gaps
3: plot: Qplot of Gaps
4: plot: ACF of Gaps
5: plot: Scatterplot of Residuals
6: plot: Qplot of Residuals
7: plot: ACF of Residuals
8: plot: Go to GPD Plots

Selection: 3

Make a plot selection (or 0 to exit):

1: plot: Point Process of Exceedances
2: plot: Scatterplot of Gaps
3: plot: Qplot of Gaps
4: plot: ACF of Gaps
5: plot: Scatterplot of Residuals
6: plot: Qplot of Residuals
7: plot: ACF of Residuals
8: plot: Go to GPD Plots

Selection: 4

Make a plot selection (or 0 to exit):

1: plot: Point Process of Exceedances
2: plot: Scatterplot of Gaps
3: plot: Qplot of Gaps
4: plot: ACF of Gaps
5: plot: Scatterplot of Residuals
6: plot: Qplot of Residuals
7: plot: ACF of Residuals
8: plot: Go to GPD Plots

Selection: 5

Make a plot selection (or 0 to exit):

1: plot: Point Process of Exceedances
2: plot: Scatterplot of Gaps
3: plot: Qplot of Gaps
4: plot: ACF of Gaps
5: plot: Scatterplot of Residuals
6: plot: Qplot of Residuals
7: plot: ACF of Residuals
8: plot: Go to GPD Plots

Selection: 6

Make a plot selection (or 0 to exit):

1: plot: Point Process of Exceedances
2: plot: Scatterplot of Gaps
3: plot: Qplot of Gaps
4: plot: ACF of Gaps
5: plot: Scatterplot of Residuals
6: plot: Qplot of Residuals
7: plot: ACF of Residuals
8: plot: Go to GPD Plots

Selection: 7

Make a plot selection (or 0 to exit):

1: plot: Point Process of Exceedances
2: plot: Scatterplot of Gaps
3: plot: Qplot of Gaps
4: plot: ACF of Gaps
5: plot: Scatterplot of Residuals
6: plot: Qplot of Residuals
7: plot: ACF of Residuals
8: plot: Go to GPD Plots

Selection: 8

Make a plot selection (or 0 to exit):

1: plot: Excess Distribution
2: plot: Tail of Underlying Distribution
3: plot: Scatterplot of Residuals
4: plot: QQplot of Residuals

Selection: 0

Make a plot selection (or 0 to exit):

1: plot: Point Process of Exceedances
2: plot: Scatterplot of Gaps
3: plot: Qplot of Gaps
4: plot: ACF of Gaps
5: plot: Scatterplot of Residuals
6: plot: Qplot of Residuals
7: plot: ACF of Residuals
8: plot: Go to GPD Plots

Selection: 0
> out <- gpd(danish, 10)
> shape(danish)
> hill(danish)
> hill(danish, option = "quantile", end = 500, p = 0.999)
> quant(danish, 0.999)
> out <- gpd(danish, 10)
> tp <- tailplot(out)
> gpd.q(tp, 0.999)
 Lower CI  Estimate  Upper CI
 64.66184  94.28956 188.91752
> gpd.sfall(tp, 0.999)
 Lower CI  Estimate  Upper CI
 96.64625 191.36972 394.87555 

Post a Comment

0 Comments