Probabilistic Utility
install.packages("mcmc")> data(foo)
> out <- glm(y ~ x1 + x2 + x3, family = binomial, data = foo)
> summary(out)
Call:
glm(formula = y ~ x1 + x2 + x3, family = binomial, data = foo)
Deviance Residuals:
Min 1Q Median 3Q-2.0371 -0.6337 0.2394 0.6685
Max
1.9599
Coefficients:
Estimate Std. Error z value
(Intercept) 0.5772 0.2766 2.087
x1 0.3362 0.4256 0.790
x2 0.8475 0.4701 1.803
x3 1.5143 0.4426 3.422
Pr(>|z|)
(Intercept) 0.036930 *
x1 0.429672
x2 0.071394 .
x3 0.000622 ***
---
Signif. codes:
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’
0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 134.602 on 99 degrees of freedom
Residual deviance: 86.439 on 96 degrees of freedom
AIC: 94.439
Number of Fisher Scoring iterations: 5
> plot(out)
Hit <Return> to see next plot:
Hit <Return> to see next plot:
0 Comments