What mathematics is needed for coding in R and Python?
Mathematics plays a crucial role in coding and computer programming, and its importance cannot be overstated. Here are several reasons why mathematics is important for coding:
Algorithms and Problem-Solving: Coding involves the development of algorithms, which are step-by-step instructions for solving a problem or performing a task. Mathematics provides the foundation for creating efficient algorithms and solving complex problems.
Logic and Boolean Algebra: Programming relies heavily on logical reasoning and Boolean algebra. Mathematical concepts such as logic gates, truth tables, and Boolean operations are fundamental to writing code that makes decisions and processes data logically.
Data Structures: Data structures, such as arrays, linked lists, trees, and graphs, are essential components of computer programs. Understanding mathematical concepts, like set theory and graph theory, helps in designing and manipulating these data structures effectively.
Complexity Analysis: Mathematics is instrumental in analyzing the time and space complexity of algorithms. This analysis helps programmers evaluate the efficiency of their code and make improvements to optimize performance.
Numerical Operations: Many programming tasks involve numerical operations, including arithmetic, calculus, and linear algebra. These mathematical concepts are vital for tasks such as scientific computing, data analysis, and simulations.
Cryptography and Security: In the realm of cybersecurity and cryptography, advanced mathematical concepts like number theory are crucial for creating secure encryption algorithms and protecting data.
Machine Learning and Artificial Intelligence: Mathematics, particularly statistics and linear algebra, is foundational to machine learning and artificial intelligence. These fields heavily rely on mathematical models, equations, and algorithms to make predictions, classify data, and optimize decision-making processes.
Graphics and Game Development: In game development and computer graphics, mathematics is essential for rendering 3D objects, simulating physics, handling transformations, and creating realistic visual effects.
Signal Processing: In fields like audio processing and image processing, mathematical techniques, including Fourier transforms and convolution, are used to manipulate and analyze signals and data.
Databases and SQL: When working with databases and querying data using SQL (Structured Query Language), mathematical set operations and relational algebra concepts come into play.
Coding Challenges and Competitions: Many coding competitions, such as those on platforms like LeetCode and HackerRank, involve solving mathematical and algorithmic problems. Strong mathematical skills are an asset in such competitions.
Debugging and Troubleshooting: The ability to think analytically and systematically, which is often nurtured through mathematical training, can be highly beneficial when debugging and troubleshooting code.
In summary, mathematics provides the intellectual tools and problem-solving techniques necessary for effective coding and computer programming. While not every coding task requires advanced mathematics, a solid foundation in mathematical concepts and logical reasoning can greatly enhance a programmer's ability to write efficient, reliable, and innovative code. Moreover, as technology continues to advance, the intersection of mathematics and coding will become increasingly important in various domains, from artificial intelligence to cybersecurity.
A number of people do not know that Python helps to learn algebra, calculus, and matrix analysis.
R Programming Code:
> x<-seq(0,10,0.2)
> window(7,4) > par(mfrow=c(1,2))How to write exponential and log in R and Python?
> y <- exp(x)
> plot (x~y,type='l',main="Exponential")
> y <- log(x)
> plot(y~x,type="l",main="Logarithmic")
> plot (y~x,type='l',main="Exponential")
> y <- exp(x)
> plot (y~x,type='l',main="Exponential")
> #Trigonometric functions
> windows(7,7)
> par(mfrow=c(2,2))
> x <- seq(0,2*pi,2*pi/100)
> y1 <- cos(x)
> y2 <- sin(x)
> y3 <- tan(x)
> plot(y1~x,type="l",main="cosine")
> plot(y1~x,type="l",main="cosine")
> plot(y2~x,type="l",main="sine")
> plot(y1~x,type="l",main="tangent")
> plot(y3~x,type="l",ylim=c(-3,3),main="tangent")
> plot(y3~x,type="l",main="tangent")
> #power laws
> x<-seq(0,10,.01)
> y
[1] 1.000000 1.221403 1.491825
[4] 1.822119 2.225541 2.718282
[7] 3.320117 4.055200 4.953032
[10] 6.049647 7.389056 9.025013
[13] 11.023176 13.463738 16.444647
[16] 20.085537 24.532530 29.964100
[19] 36.598234 44.701184 54.598150
[22] 66.686331 81.450869 99.484316
[25] 121.510418 148.413159 181.272242
[28] 221.406416 270.426407 330.299560
[31] 403.428793 492.749041 601.845038
[34] 735.095189 897.847292 1096.633158
[37] 1339.430764 1635.984430 1998.195895
[40] 2440.601978 2980.957987 3640.950307
[43] 4447.066748 5431.659591 6634.244006
[46] 8103.083928 9897.129059 12088.380730
[49] 14764.781566 18033.744928 22026.465795
> y=x^0.5
How to plot sequence in python?
> plot(x,y,type="l",main="0<b<1") > y <- x > plot(x,y,type="l",main="b=1") > y <- xˆ2 > y <- x^2 > plot(x,y,type="l",main="b>1") > y <- 1/x > plot(x,y,type="l",main="b<0") > #polynomial function > x<-seq(0,10,.01) > y1 <- 2+5*x-0.2*x^2 > y2 <- 2+5*x-0.4*x^2 > y3 <- 2+4*x-0.6*x^2+0.04*x^3 > y4<- 2+4*x+2*x^2-0.6*x^3+0.04*x^4 > par(mfrow=c(2,2)) > plot(x,y1,type="l",ylab="y",main="decelerating") > plot(x,y2,type="l",ylab="y",main="humped") > plot(x,y3,type="l",ylab="y",main="inflection") > plot(x,y4,type="l",ylab="y",main="local maximum") > #power set > x <- seq(0,1,0.01) > y <- xˆ0.5How to write squareroot x
> y <- x^0.5 > plot(x,y,type="l",main="0<b<1") > y <- x > plot(x,y,type="l",main="b=1") > y <- x^2 > plot(x,y,type="l",main="b>1") > y <- 1/x > plot(x,y,type="l",main="b<0") > #Polynomial functions > par(mfrow=c(2,2)) > y1 <- x/(2+5*x) > y2 <- 1/(x-2+4/x) > y3 <- 1/(xˆ2-2+4/x) > y3 <- 1/(x^2-2+4/x) > plot(x,y1,type="l",ylab="y",main="Michaelis-Menten") > plot(x,y2,type="l",ylab="y",main="shallow hump") > plot(x,y3,type="l",ylab="y",main="steep hump") > #Gamma function > par(mfrow=c(1,1)) > t <- seq(0.2,4,0.01) > plot(t,gamma(t),type="l") > abline(h=1,lty=2) > abline(h=4.8,lty=2) > #Asymptotic functions > (1/44.44 - 1/70.59)/(1/0.2 - 1/0.6) [1] 0.002500781 > #Sigmoid (S-shaped) functions > par(mfrow=c(2,2)) > x <- seq(0,10,0.1) > y <- 100/(1+90*exp(-1*x)) > plot(x,y,type="l",main="three-parameter logistic") > #four-parameter logistic function > y <- 20+100/(1+exp(0.8*(3-x))) > plot(x,y,ylim=c(0,140),type="l",main="four-parameter logistic") > #Gompertz growth model, > x <- -200:100 > y <- 100*exp(-exp(0.02*x)) > plot(x,y,type="l",main="negative Gompertz") > x <- 0:100 > y <- 50*exp(-5*exp(-0.08*x)) > plot(x,y,type="l",main="positive Gompertz") > #Biexponential model > a <- 10 > b <- -0.8 > c <- 10 > d <- -0.05 > y <- a*exp(b*x)+c*exp(d*x) > plot(x,y,main="+ - + -",type="l") > a <- 10 > b <- -0.8 > c <- 10 > d <- 0.05 > y <- a*exp(b*x)+c*exp(d*x) > plot(x,y,main="+ - + +",type="l") > a <- 200 > b <- 0.2 > c <- -1 > d <- 0.7 > y <- a*exp(b*x)+c*exp(d*x) > > plot(x,y,main="+ + - +",type="l") > a <- 200 > b <- 0.05 > c <- 300 > d <- -0.5 > y <- a*exp(b*x)+c*exp(d*x) > plot(x,y,main="+ + + -",type="l") > #Probability functions > par(mfrow=c(1,1)) > x <- 0:6 > plot(x,factorial(x),type="s",main="factorial x",log="y") > plot(x,factorial(x)/(x-2),type="s",main="factorial x",log="y") > choose(8,3) [1] 56 > plot(0:8,choose(8,0:8),type="s",main="binomial coefficients") > curve(pnorm(x),-3,3) > arrows(-1,0,-1,pnorm(-1),col="red") > arrows(-1,pnorm(-1),-3,pnorm(-1),col="green") > pnorm(-1) [1] 0.1586553 > #probability density > curve(dnorm(x),-3,3) > #Normal distribution > par(mfrow=c(2,2)) > x <- seq(-3,3,0.01) > y <- exp(-abs(x)) > plot(x,y,type="l",main= "x") > y <- exp(-abs(x)ˆ2) > y <- exp(-abs(x)^2) > plot(x,y,type="l",main= "x^2") > y <- exp(-abs(x)^3) > plot(x,y,type="l",main= "x^3") > y <- exp(-abs(x)^8) > plot(x,y,type="l",main= "x^8") > pnorm(-1.25) [1] 0.1056498 > pnorm(1.875) [1] 0.9696036 > 1-pnorm(1.875) [1] 0.03039636 > pnorm(1.25)-pnorm(-0.625) [1] 0.6283647 > par(mfrow=c(2,2)) > lambda <- 2 > x <- numeric(40) > x[1] <- 0.6 > for (t in 2 : 40) x[t] <- lambda * x[t-1] * (1 - x[t-1]) > plot(1:40,x,type="l",ylim=c(0,1),ylab="population", + xlab="time",main="lambda = 2.0") > lambda <- 3.3 > plot(1:40,x,type="l",ylim=c(0,1),ylab="population", + xlab="time",main="lambda = 3.3") > lambda <- 3.5 > plot(1:40,x,type="l",ylim=c(0,1),ylab="population", + xlab="time",main="lambda = 3.5") > lambda <- 4 > x <- numeric(40) > x[1] <- 0.6 > for (t in 2 : 40) x[t] <- lambda * x[t-1] * (1 - x[t-1]) > plot(1:40,x,type="l",ylim=c(0,1),ylab="population", + xlab="time",main="lambda = 4") > lambda <- 4 > x <- numeric(40) > x[1] <- 0.6 > for (t in 2 : 40) x[t] <- lambda * x[t-1] * (1 - x[t-1]) > plot(1:40,x,type="l",ylim=c(0,1),ylab="population", + xlab="time",main="lambda = 4.0") > lambda <- 3.5 > x <- numeric(40) > x[1] <- 0.6 > for (t in 2 : 40) x[t] <- lambda * x[t-1] * (1 - x[t-1]) > plot(1:40,x,type="l",ylim=c(0,1),ylab="population", + xlab="time",main="lambda = 3.5") > lambda <- 3 > x <- numeric(40) > x[1] <- 0.6 > for (t in 2 : 40) x[t] <- lambda * x[t-1] * (1 - x[t-1]) > plot(1:40,x,type="l",ylim=c(0,1),ylab="population", + xlab="time",main="lambda = 3") > lambda <- 2 > x <- numeric(40) > x[1] <- 0.6 > for (t in 2 : 40) x[t] <- lambda * x[t-1] * (1 - x[t-1]) > plot(1:40,x,type="l",ylim=c(0,1),ylab="population", + xlab="time",main="lambda = 2") > lambda <- 12 > x <- numeric(40) > x[1] <- 0.6 > for (t in 2 : 40) x[t] <- lambda * x[t-1] * (1 - x[t-1]) > plot(1:40,x,type="l",ylim=c(0,1),ylab="population", + xlab="time",main="lambda = 12") > numbers <- function (lambda) { + x <- numeric(400) + x[1] <- 0.6 + for (t in 2 : 400) x[t] <- lambda * x[t-1] * (1 - x[t-1]) + x[381:400] } > par(mfrow=c(1,1)) > plot(c(2,4),c(0,1),type="n",xlab="lambda",ylab="population") > for(lam in seq(2,4,0.01)) + points(rep(lam,20),sapply(lam,numbers),pch=16,cex=0.5,col="blue") > plot(0:100,0:100,type="n",xlab="",ylab="") > x <- y <- 50 > points(50,50,pch=16,col="red",cex=1.5) > for (i in 1:10000) { + xi <- sample(c(1,0,-1),1) + yi <- sample(c(1,0,-1),1) + lines(c(x,x+xi),c(y,y+yi),col="blue") + x <- x+xi + y <- y+yi + if (x>100 | x<0 | y>100 | y<0) break + } > y <- c(8,3,5,7,6,6,8,9,2,3,9,4,10,4,11) > mean(y) [1] 6.333333 > median(y) [1] 6 > mode(y) [1] "numeric" > range(y) [1] 2 11 > var(y) [1] 7.809524 > quantile(y) 0% 25% 50% 75% 100% 2.0 4.0 6.0 8.5 11.0 > cumsum(y) [1] 8 11 16 23 29 35 43 52 54 57 66 70 80 84 95 > colMeans(y) How to write matrix code? > counts <- rnbinom(10000,mu=0.92,size=1.1) > counts[1:30] [1] 1 2 0 1 0 4 1 0 0 0 4 1 1 1 1 0 0 1 0 0 0 3 0 [24] 0 3 1 0 0 0 0 > X <- matrix(c(1,0,0,0,1,0,0,0,1),nrow=3) > X [,1] [,2] [,3] [1,] 1 0 0 [2,] 0 1 0 [3,] 0 0 1 > class(X) [1] "matrix" "array" > attributes(X) $dim [1] 3 3 > vector <- c(1,2,3,4,4,3,2,1) > V <- matrix(vector,byrow=T,nrow=2) > V [,1] [,2] [,3] [,4] [1,] 1 2 3 4 [2,] 4 3 2 1 > dim(vector) <- c(4,2) > dim(vector) [1] 4 2 > is.matrix(vector) [1] TRUE > vector [,1] [,2] [1,] 1 4 [2,] 2 3 [3,] 3 2 [4,] 4 1 > (vector <- t(vector)) [,1] [,2] [,3] [,4] [1,] 1 2 3 4 [2,] 4 3 2 1 > X <- matrix(rpois(20,1.5),nrow=4) > X [,1] [,2] [,3] [,4] [,5] [1,] 2 0 1 2 0 [2,] 1 1 2 1 4 [3,] 0 2 1 2 2 [4,] 2 1 0 2 2 > X <- rbind(X,apply(X,2,mean)) > X [,1] [,2] [,3] [,4] [,5] [1,] 2.00 0 1 2.00 0 [2,] 1.00 1 2 1.00 4 [3,] 0.00 2 1 2.00 2 [4,] 2.00 1 0 2.00 2 [5,] 1.25 1 1 1.75 2 > X <- cbind(X,apply(X,1,var)) > X [,1] [,2] [,3] [,4] [,5] [,6] [1,] 2.00 0 1 2.00 0 1.00000 [2,] 1.00 1 2 1.00 4 1.70000 [3,] 0.00 2 1 2.00 2 0.80000 [4,] 2.00 1 0 2.00 2 0.80000 [5,] 1.25 1 1 1.75 2 0.20625 > colnames(X) <- c(1:5,"variance") > X 1 2 3 4 5 variance [1,] 2.00 0 1 2.00 0 1.00000 [2,] 1.00 1 2 1.00 4 1.70000 [3,] 0.00 2 1 2.00 2 0.80000 [4,] 2.00 1 0 2.00 2 0.80000 [5,] 1.25 1 1 1.75 2 0.20625 > rownames(X) <- c(1:4,"mean") > X 1 2 3 4 5 variance 1 2.00 0 1 2.00 0 1.00000 2 1.00 1 2 1.00 4 1.70000 3 0.00 2 1 2.00 2 0.80000 4 2.00 1 0 2.00 2 0.80000 mean 1.25 1 1 1.75 2 0.20625 > rowmatrix <- mat[2, , drop = FALSE] How to use appply function? > apply(X,1,function(x) x^2+x) 1 2 3 4 mean 1 6 2.00 0.00 6.00 2.8125000 2 0 2.00 6.00 2.00 2.0000000 3 2 6.00 2.00 0.00 2.0000000 4 6 2.00 6.00 6.00 4.8125000 5 0 20.00 6.00 6.00 6.0000000 variance 2 4.59 1.44 1.44 0.2487891 > sapply(3:7, seq) [[1]] [1] 1 2 3 [[2]] [1] 1 2 3 4 [[3]] [1] 1 2 3 4 5 [[4]] [1] 1 2 3 4 5 6 [[5]] [1] 1 2 3 4 5 6 7 > a <- seq(0.01,0.2,.005) > plot(a,sapply(a,sumsq),type="l") > # creat the vector > x<-1:30 > x [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 [16] 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 > y<-29:1 > y [1] 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 [16] 14 13 12 11 10 9 8 7 6 5 4 3 2 1 > z<-(1:30,29:1) > z<-c(1:30,29:1) > z [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 [16] 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 [31] 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 [46] 14 13 12 11 10 9 8 7 6 5 4 3 2 1 > tep<-c(4,6,3) > tep [1] 4 6 3 > 3^tep [1] 81 729 27 > 7^tep [1] 2401 117649 343 > tep^(2+tep) [1] 4096 1679616 243 > tep^(2+tep^3) [1] 5.444518e+39 4.334835e+169 6.863038e+13 > rep(tep,10) [1] 4 6 3 4 6 3 4 6 3 4 6 3 4 6 3 4 6 3 4 6 3 4 6 [24] 3 4 6 3 4 6 3 > rep(tep,l=31) [1] 4 6 3 4 6 3 4 6 3 4 6 3 4 6 3 4 6 3 4 6 3 4 6 [24] 3 4 6 3 4 6 3 4 > #create a vector of the values of e^x cos(x)at x=4,4.1,4.2....7 > qap<-seq(4,7,by=0.1) > exp(qap)*cos(qap) [1] -35.687732 -34.685042 -32.693695 -29.538816 [5] -25.032529 -18.975233 -11.157417 -1.362099 [9] 10.632038 25.046705 42.099201 61.996630 [13] 84.929067 111.061586 140.525075 173.405776 [17] 209.733494 249.468441 292.486707 338.564378 [21] 387.360340 438.397873 491.045163 544.494927 [25] 597.743415 649.569088 698.511407 742.850196 [29] 780.586182 809.423392 826.754210 > exp(qap)*sin(qap) [1] -41.320016 -49.375076 -58.122190 [4] -67.521241 -77.508816 -87.994457 [7] -98.856669 -109.938735 -121.044378 [10] -131.933345 -142.316981 -151.853890 [13] -160.145806 -166.733804 -171.095016 [16] -172.640026 -170.711169 -164.581957 [19] -153.457895 -136.478991 -112.724257 [22] -81.218568 -40.942224 9.156378 [25] 70.144561 143.085260 229.012558 [28] 328.902434 443.638334 573.971153 [31] 720.473289 > tanh(qap) [1] 0.9993293 0.9994508 0.9995504 0.9996319 [5] 0.9996986 0.9997532 0.9997979 0.9998346 [9] 0.9998646 0.9998891 0.9999092 0.9999257 [13] 0.9999391 0.9999502 0.9999592 0.9999666 [17] 0.9999727 0.9999776 0.9999817 0.9999850 [21] 0.9999877 0.9999899 0.9999918 0.9999933 [25] 0.9999945 0.9999955 0.9999963 0.9999970 [29] 0.9999975 0.9999980 0.9999983 > exp(tanh(qap)) [1] 2.716459 2.716789 2.717060 2.717281 2.717463 [6] 2.717611 2.717733 2.717832 2.717914 2.717980 [11] 2.718035 2.718080 2.718116 2.718146 2.718171 [16] 2.718191 2.718207 2.718221 2.718232 2.718241 [21] 2.718248 2.718254 2.718259 2.718263 2.718267 [26] 2.718270 2.718272 2.718274 2.718275 2.718276 [31] 2.718277 > #creat vectors > #(0.1^3 0.2^1,0.1^6 0.2^4.....,0.1^36 0.2^34 ) > (0.1^seq(3,36,by=3))*(0.2^seq(1,34,by=3)) [1] 2.000000e-04 1.600000e-09 1.280000e-14 [4] 1.024000e-19 8.192000e-25 6.553600e-30 [7] 5.242880e-35 4.194304e-40 3.355443e-45 [10] 2.684355e-50 2.147484e-55 1.717987e-60 > #(2,2^2/2,2^3/3,......,2^25/25) > (2^(1:25))/(1:25) [1] 2.000000e+00 2.000000e+00 2.666667e+00 [4] 4.000000e+00 6.400000e+00 1.066667e+01 [7] 1.828571e+01 3.200000e+01 5.688889e+01 [10] 1.024000e+02 1.861818e+02 3.413333e+02 [13] 6.301538e+02 1.170286e+03 2.184533e+03 [16] 4.096000e+03 7.710118e+03 1.456356e+04 [19] 2.759411e+04 5.242880e+04 9.986438e+04 [22] 1.906502e+05 3.647221e+05 6.990507e+05 [25] 1.342177e+06 > #sum > # > #(i^3+4i^2) where i=10:100 > mohi<-10:100 > sum(mohi^3+4*mohi^2) [1] 26852735 > rj<-1:25 > sum((2^rj)/rj+3*rj/(rj^2)) [1] 2807618 > #Function paste to create > #("label 1","label 2".......,"label 30") > paste("label",1:30) [1] "label 1" "label 2" "label 3" "label 4" [5] "label 5" "label 6" "label 7" "label 8" [9] "label 9" "label 10" "label 11" "label 12" [13] "label 13" "label 14" "label 15" "label 16" [17] "label 17" "label 18" "label 19" "label 20" [21] "label 21" "label 22" "label 23" "label 24" [25] "label 25" "label 26" "label 27" "label 28" [29] "label 29" "label 30" > #("fn1","fn2",....,"fn30") > paste("fn",1:30,sep="") [1] "fn1" "fn2" "fn3" "fn4" "fn5" "fn6" [7] "fn7" "fn8" "fn9" "fn10" "fn11" "fn12" [13] "fn13" "fn14" "fn15" "fn16" "fn17" "fn18" [19] "fn19" "fn20" "fn21" "fn22" "fn23" "fn24" [25] "fn25" "fn26" "fn27" "fn28" "fn29" "fn30" > #Creat two vectors of random integer which are chosen with replacement from the integers 0,1,2.....,999. both vectors have lengh 250 > set.seed(50) > rVec<-sample(0:999,250,replace = T) > qVec<-sample(0:999,250,replace = T) > #suppose x=(x1,x2,......xn) denote rVec and y=(y1,y2....yn) denot qVec > # creat the vector (y2-x1,......,yn-xn-1) > qVec[-1]-rVec[-length(rVec)] [1] -359 692 -724 40 -626 -719 -809 527 -89 [10] -829 248 144 -749 -352 -220 -249 387 -492 [19] 85 -106 303 -97 -436 146 282 -206 -385 [28] -96 -567 -757 287 277 -562 292 -89 -93 [37] -847 -822 -203 679 309 -199 -273 4 -47 [46] 142 122 414 -602 -304 -674 -8 -662 -168 [55] -349 -63 -221 115 1 -600 -382 -487 2 [64] 375 19 -113 -634 107 60 47 214 -325 [73] -49 -290 169 290 -624 457 -408 581 -189 [82] 204 -80 409 209 -410 461 37 -127 185 [91] 382 -446 44 -56 -270 -598 -378 -155 134 [100] -187 109 316 -139 158 305 -39 -119 182 [109] 441 -403 -107 615 614 -378 -464 31 -385 [118] 665 674 -217 -279 -406 -45 -489 -350 -451 [127] -18 660 504 -6 60 -130 -379 -302 -219 [136] -21 438 129 -201 -275 131 694 -96 -176 [145] 117 -113 887 -439 -126 -148 392 -158 444 [154] -291 232 -12 -274 477 -510 336 -759 -363 [163] -195 -220 160 -308 -333 302 -183 227 -12 [172] 428 665 -301 -8 222 -50 -444 -425 -650 [181] -424 318 154 238 -727 71 472 908 265 [190] 654 -644 -754 657 -382 -313 910 -381 394 [199] -596 602 397 -572 378 -274 -271 601 -791 [208] -378 -461 39 163 -118 -332 -170 -94 262 [217] -474 566 -273 -366 -400 374 42 100 135 [226] 609 -527 580 -219 128 -524 620 -206 410 [235] -280 -66 -50 252 279 48 -595 -59 -623 [244] 247 514 62 -102 475 287 > #Create the vector (sin(y1)/cos(x2),sin(y2)/cos(x3),......sin) > Create the vector (sin(y1)/cos(x2),sin(y2)/cos(x3),......siny-1)
PROBABILITY
"
}
}
}
0 Comments